
Algorithm for finding effective impedance from e-cloud buildup 

simulations 

The comprehensive simulations of the e-cloud driven instabilities using e.g. POSINST+WARP package [1] 

require significant computational resources while providing only limited insight into the underlying 

physics. To better understand the mechanics of the instability it can be useful to study its various 

aspects separately.  

We may start with the e-cloud generation code like POSINST considering e-cloud created by a train of 

periodically displaced bunches, compute and Fourier analyze the e-cloud electric field acting back on the 

beam. A convenient quantity which would allow to use the standard theory of coherent instabilities is 

coupling impedance. For transverse dipole oscillations of the beam (horizontal for definiteness) the 

impedance introduced by an object of length L is defined as (confer Ref. [2] Eq.(2.70)) 
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where )(xE  and )(1 I  are the Fourier transforms of the electric field (contribution from the e-cloud 

magnetic field is negligible) and the beam current dipole moment: 
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All values are assumed to be taken at a fixed longitudinal position, say z=0. The dipole moment is 

defined as:  

dxdyxjI z1           (3) 

with jz being the beam current density, x and y being the transverse coordinates. 

Let us consider a train of bunches with a Gaussian longitudinal profile, 
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where T0 is the time interval between bunches, n=1,2,…  Assuming that the bunches are horizontally 

displaced as 
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we have for the beam current dipole moment  
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If the number 

  /2mN           (7) 

is rational, then I1 is exactly periodic. We will limit ourselves to even simpler case of integer Nm so that 

the full period is 

0TNT m           (8) 

The Fourier transform of a periodic function can be reduced to an integral over one period 
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where (x) is Dirac’s delta function,  is an arbitrary moment of time. It should be noted that )(
~
A has 

physical significance only for frequencies 

Tkk /2           (10) 

The e-cloud electric field in the steady state is also periodic. However, it may require too long 

computational time to reach it so we will ignore the lack of periodicity and modify the definition of the 

impedance as 
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By changing   we can slide the window across the train and observe the development of e-cloud 

effective impedance in time. 

The reduced Fourier transform of the beam dipole moment required in eq. (11) can be obtained 

analytically. The following result was obtained in the case of short bunches, t << T0, but can be 

generally true: 
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where i,k is the Kronecker delta: i,i =1, i,k =0, ik. 

Let us note that Eq. (12) was obtained for the case when each bunch is shifted as a whole by the amount 

given by Eq. (5). If the displacement along the beam varies continuously according to the sinusoidal law 
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then for the beam dipole moment Fourier transform we would have a slightly different result: 
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For short bunches, t << T0, the difference between Eqs. (12) and (14) is negligible. 

These equations show that only first sidebands of the multiples of bunch sequence frequency 2j/T0 are 

excited.  

Let us consider now the effect of the e-cloud electric field on the beam dynamics. For that we must 

know how the phase of beam oscillations (and therefore the phase of the e-cloud electric field) varies 

with z. The initial offset given by Eq. (5) or Eq. (13) must be complemented by the initial values of 

transverse momentum (or the slope of the trajectory x=dx/dz that we will refer to as the momentum). 

We will assume – for simplicity – that at the observation point the beta-function does not have a slope: 
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and that all bunches have the same value of the Courant-Snyder invariant. Then there are two 

possibilities for bunch-by-bunch transverse momentum (assuming that position is given by Eq. (5)): 
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which are illustrated by Fig. 1 for the case Nm=6 

 
 
 
 
 
 
 
 
 

Figure 1. Two possible distributions in phase space corresponding to the same bunch displacements 
while the momenta are given by Eq. (16) with upper sign (left) and lower sign (right). 

When a bunch moves from the initial position z=0 its offset and momentum vary according to the 

betatron phase advance 
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so that in the vicinity of the starting point (x  const by assumption (15)) 
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To proceed further let us employ the continuous wave representation (13). The initial phase n is 

specific for a given bunch n and for z0 “moves” with it so the transition to the continuous wave 

representation is accomplished by substitution 
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where v0 is the longitudinal velocity of the beam. 

Upon this substitution the beam offset becomes a continuous function (as for a coasting beam): 
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whereas derivative w.r.t. z should be considered as a full derivative 
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Let us note in passing that from Eq. (20) we can find the phase velocity of the beam oscillations 
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and verify that the upper sign corresponds to the so-called fast wave (vphase > v0) while the lower sign 

corresponds to a slow wave, vphase < v0. 

 Using z as the independent variable we can write for the equation of motion and its immediate 

consequence: 
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Since the instantaneous current I0 in our case is an integral of motion (I0=0), we may use it as a weight 

and obtain 
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where the transverse current was introduced: Ix=xI0. 

Noticing that for periodic functions of time the full derivative and integral over the period are 

commuting operations we can average Eq. (24) over T  = NmT0 and obtain 
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Under the same assumptions as were made to derive Eq. (14) we can find for the Fourier transform of 

the transverse current 
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and obtain for the work of the electric field over one period 
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where the effective impedance was introduced: 
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Its real part is a single important value which determines the instability growth rate (in absence of 

Landau damping and decoherence) and which can be used in study of parametric dependencies. In 

practice it can be found from Eq. (27) read from right to left. 

Known the effective impedance we can find the instability growth rate. Since 
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(assumption (15) applied) we have from Eqs. (25) and (27) 
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This result illustrates a well-known fact from the theory of coasting beam instabilities: it is the slow wave 

that may go unstable in a passive medium (ReZeff >0) while the fast wave is damped. 

Let us take for example parameters of the Recycler: Np=51010, T0=18.8ns, length of focusing magnets 

L=683.9m and the average beta-function at their locations <x>=44m. Then for specific impedance 

ReZeff/L=0.1M/m2 (or the total impedance of e-cloud in focusing magnets ReZeff = 68.4 M/m) we have 

from Eq. (30) 
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The amplitude of oscillations growth rate is half this value or ~7turns.  

Important remark 

The primary goal of this note was to show how the simulations can be quantified in terms of effective 

impedance. Its real part is given by Eq. (27) read from right to left. For the slow mode (lower sign) we 

have: 
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As for Eq. (30), it serves exclusively the didactic purpose: it implies the translational symmetry in z with 

period T/v0, i.e. – in fact – an absolute instability. To obtain practical results one should solve a more 

difficult case with boundary condition in z at the injection point. 

 

 


